

Failure Modes, Effects and Diagnostic Analysis

Project:

Temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output

Customer:

PR electronics A/S Rønde Denmark

Contract No.: PR electronics A/S 11/12-052 Report No.: PR electronics A/S 11/12-052 R026 Version V3, Revision R2; March 2016

Stephan Aschenbrenner

Management summary

This report summarizes the results of the hardware assessment carried out on the temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output for temperature sensors, voltage signals, resistance-type sensors and potentiometers with software version V1.4 (7501: V1.1 for the display part) and hardware version as shown in the referred circuit diagrams (see section 2.4.1). Table 1 gives an overview of the considered versions of the temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output.

The hardware assessment consists of a Failure Modes, Effects and Diagnostics Analysis (FMEDA). A FMEDA is one of the steps taken to achieve functional safety assessment of a device per IEC 61508. From the FMEDA, failure rates are determined and consequently the Safe Failure Fraction (SFF) is calculated for the device. For full assessment purposes all requirements of IEC 61508 must be considered.

Table 1: Version overview

PR5337A	Temperature transmitter, head mounted – (Standard)	
PR5337D	Temperature transmitter, head mounted – (ATEX, FM, CSA)	
PR6337A	Temperature transmitter, rail mounted, 1 / 2-channels – (Standard)	
PR6337D	Temperature transmitter, rail mounted, 1 / 2-channels – (ATEX, FM, CSA)	
PR7501	Temperature transmitter, field mounted – (ATEX, FM, CSA)	

For safety applications only the described 4..20mA current output versions of the device were considered. Where PR5337 / PR6337 is mentioned this is also applicable for the PR5335 / PR6335 devices. All other possible variants or electronics are not covered by this report.

The failure rates used in this analysis are the basic failure rates from the Siemens standard SN 29500. This failure rate database is specified in the safety requirements specification from PR electronics A/S for the temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output.

The listed failure rates are valid for operating stress conditions typical of an industrial field environment similar to IEC 60654-1 class C (sheltered location) with an average temperature over a long period of time of 40°C. For a higher average temperature of 60°C, the failure rates should be multiplied with an experience based factor of 2.5. A similar multiplier should be used if frequent temperature fluctuation must be assumed.

The temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output can be considered to be a Type B¹ element with a hardware fault tolerance of 0.

Assuming that the application program in the connected safety logic solver is configured according to NAMUR NE43 to detect under-range and over-range failures of the 4..20 mA output signal, and does not automatically trip on these failures; these failures have been classified as dangerous detected failures. For these applications the following tables show the worst-case failure rates according to IEC 61508:2010 2nd edition for the temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output (considering one input and one output being part of the safety function) when used with RTD or Thermocouple sensor types.

¹ Type B element: "Complex" element (using micro controllers or programmable logic); for details see 7.4.4.1.3 of IEC 61508-2.

Table 2: PR5337 / PR6337 / PR7501 for RTD sensor types – IEC 61508 failure rates

Failure category	Siemens SN 29500 [FIT]
Fail Safe Detected (λ _{SD})	0
Fail Safe Undetected (λ _{SU})	0
Fail Dangerous Detected (λ _{DD})	203
Fail Dangerous Detected (λ _{dd})	144
Fail Annunciation Detected (λ _{AD})	0
Fail High (λ _H)	17
Fail Low (λ _L)	42
Fail Dangerous Undetected (λ _{DU})	71
Fail Annunciation Undetected (λ _{AU})	1
No effect	122
No part	65
Total failure rate of the safety function (1)	274
Total failure rate of the safety function (λ_{Total})	
Safe failure fraction (SFF)	74%
DC _D	74%

SIL AC ² SIL 1

© exida.com GmbH Stephan Aschenbrenner

² SIL AC (architectural constraints) means that the calculated values are within the range for hardware architectural constraints for the corresponding SIL but does not imply all related IEC 61508 requirements are fulfilled. In addition it must be shown that the device has a suitable systematic capability for the required SIL and that the entire safety function can fulfill the required PFD / PFH values.

Table 3: PR5337 / PR6337 / PR7501 for TC sensor types – IEC 61508 failure rates

Failure category	Siemens SN 29500 [FIT]
Fail Safe Detected (λ _{SD})	0
Fail Safe Undetected (λ _{SU})	0
Fail Dangerous Detected (λ _{DD})	205
Fail Dangerous Detected (λ _{dd})	146
Fail Annunciation Detected (λ _{AD})	0
Fail High (λ _H)	17
Fail Low (λ _L)	42
Fail Dangerous Undetected (λ _{DU})	74
Fail Annunciation Undetected (λ _{AU})	1
No effect	117
No part	65
Total failure rate of the safety function (λ_{Total})	279
Safe failure fraction (SFF)	73%
DC _D	73%
SIL AC ³	SIL 1

These failure rates are valid for the useful lifetime of the temperature transmitter PR5337 / PR7501 with 4..20 mA output (see Appendix 2).

© exida.com GmbH Stephan Aschenbrenner

³ SIL AC (architectural constraints) means that the calculated values are within the range for hardware architectural constraints for the corresponding SIL but does not imply all related IEC 61508 requirements are fulfilled. In addition it must be shown that the device has a suitable systematic capability for the required SIL and that the entire safety function can fulfill the required PFD / PFH values.

Table of Contents

Ma	nagement summary	.2
1	Purpose and Scope	.6
2	Project management	.7
	2.1 exida	. 7
	2.2 Roles and parties involved	. 7
	2.3 Standards / Literature used	. 7
	2.4 Reference documents	. 8
	2.4.1 Documentation provided by the customer	. 8
	2.4.2 Documentation generated by exida	. 9
3	Description of the temperature transmitters PR5337 / PR6337 / PR7501	10
4	Failure Modes, Effects, and Diagnostic Analysis	12
	4.1 Description of the failure categories	12
	4.2 Methodology – FMEDA, Failure rates	13
	4.2.1 FMEDA	13
	4.2.2 Failure rates	13
	4.2.3 Assumptions	14
	4.3 Results	15
	4.3.1 Temperature transmitter PR5337 / PR6337 / PR7501 with 420 mA output	16
5	Using the FMEDA results	18
	5.1 Temperature sensing devices	18
	5.1.1 Thermocouple (TC) sensing devices	18
	5.1.2 RTD sensing devices	19
6	Applying the FMEDA results	21
	6.1 Example PFD _{AVG} calculation	21
7	Terms and Definitions	22
8	Status of the document	23
	8.1 Liability	23
	8.2 Releases	
	8.3 Release Signatures	23
Apı	pendix 1: Possibilities to reveal dangerous undetected faults during the proof test2	24
Αp	pendix 2: Impact of lifetime of critical components on the failure rate	25
Ap	pendix 3: Failure rates according to IEC 61508:2000 1st Edition	26

1 Purpose and Scope

This document shall describe the results of the Failure Modes, Effects and Diagnostics Analysis (FMEDA) carried out on the described temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output configurations with software version V1.4 (7501: V1.1 for the display part) and hardware version as shown in the referred circuit diagrams (see section 2.4.1).

The FMEDA builds the basis for an evaluation whether a sensor subsystem, including the temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output meets the average Probability of Failure on Demand (PFD_{AVG}) requirements and the architectural constraints / minimum hardware fault tolerance requirements per IEC 61508. This FMEDA **does not** replace a full assessment according to EC 61508 and it **does not** consider any calculations necessary for proving intrinsic safety.

2 Project management

2.1 exida

exida is one of the world's leading accredited Certification Bodies and knowledge companies specializing in automation system safety and availability with over 300 years of cumulative experience in functional safety. Founded by several of the world's top reliability and safety experts from assessment organizations and manufacturers, exida is a global company with offices around the world. exida offers training, coaching, project oriented system consulting services, safety lifecycle engineering tools, detailed product assurance, cyber-security and functional safety certification, and a collection of on-line safety and reliability resources. exida maintains a comprehensive failure rate and failure mode database on process equipment.

2.2 Roles and parties involved

PR electronics A/S Manufacturer of the temperature transmitter PR5337 / PR6337 /

PR7501 with 4..20 mA output.

exida Performed the hardware assessment.

PR electronics A/S contracted *exida* in January 2012 for the FMEDA of the above mentioned device, in July 2014 with the update of the FMEDA and in June 2015 with review of the FMEDA for PR7501 and adding results to this report.

2.3 Standards / Literature used

The services delivered by exida were performed based on the following standards / literature.

[N1]	IEC 61508-2:2010	Functional Safety of Electrical / Electronic / Programmable Electronic Safety-Related Systems, 2 nd edition
[N2]	SN 29500-1:01.2004 SN 29500-1 H1:12.2005 SN 29500-2:12:2004 SN 29500-3:12.2004 SN 29500-4:03.2004 SN 29500-5:06.2004 SN 29500-7:11.2005 SN 29500-9:11.2005 SN 29500-10:12.2005 SN 29500-11:08.1990 SN 29500-12:03.1994 SN 29500-13:03.1994 SN 29500-14:03.1994	Siemens standard with failure rates for components

2.4 Reference documents

2.4.1 Documentation provided by the customer

[D1]	5337Auk.pdf	Datasheet "5337A - 2-WIRE TRANSMITTER WITH HART® PROTOCOL"; 5337AY101-UK (1207)
[D2]	5337Duk.pdf	Datasheet "5337D - 2-WIRE TRANSMITTER WITH HART® PROTOCOL"; 5337AY101-UK (1207)
[D3]	6337Auk.pdf	Datasheet "6337A - 2-WIRE TRANSMITTER WITH HART® PROTOCOL"; 6337AY101-UK (1207)
[D4]	6337Duk.pdf	Datasheet "6337D - 2-WIRE TRANSMITTER WITH HART® PROTOCOL"; 6337AY101-UK (1207)
[D5]	5337_BOM.xls	Parts list PR5337
[D6]	6337A2A_BOM.xls 6337A2B_BOM.xls	Parts list PR6337
[D7]	5335-1-23-PDF.pdf	5335-1-23 schematic of 23.12.11
[D8]	6335-1-01-PDF.pdf	6335-1-01 schematic of 16.11.07
[D9]	PRetop 5337 FMEDA v.6.xls	FMEDA dated 20.02.12
[D10]	PRetop 6337 FMEDA v.1.xls	FMEDA dated 22.02.12
[D11]	5337 FMEDA Update July 2014- 07-10.docx	5337 / 6337 FMEDA update July 2014, version V0R0 of 10.07.14
[D12]	PRetop 5337 FMEDA RTD V1.xls	FMEDA dated 07.07.14
[D13]	PRetop 5337 FMEDA TC V1.xls	FMEDA dated 07.07.14
[D14]	PRetop 6337 FMEDA RTD V1.xls	FMEDA dated 10.07.14
[D15]	PRetop 6337 FMEDA TC V1.xls	FMEDA dated 10.07.14
[D16]	Total SFF calculations.xlsx	SFF summary based on updated FMEDAs
[D17]	7501-1-06.pdf	Schematics and Layouts of PR 7501, V6R0, dated 25.06.2015
[D18]	7501-3-02.pdf	Connection board schematic and Layout of PR 7501, dated 01.06.2015
[D19]	7501-1-06-BOM.xlsx	Parts list for PCB 7501-1-06
[D20]	7501-2-06-BOM.xlsx	Parts list for PCB 7501-2-06
[D21]	7501-3-02-BOM.xlsx	Parts list for PCB 7501-3-02
[D22]	7501V100_UK.pdf	Product manual
[D23]	7501-FIT-V3R0.pdf	Preliminary schematic with reference to FIT test
[D24]	7501-FIT-V6R0.pdf	Released schematic with reference to last FIT test
[D25]	7501-FMEDA-V6R1.xls	EXIDA FMEDA spread sheet, 29.7.2015
[D26]	7501-FD-SFF-V1R0.docx	Overview for calculation, dated 26.06.2015
	· · · · · · · · · · · · · · · · · · ·	

The list above only means that the referenced documents were provided as basis for the FMEDA but it does not mean that exida checked the correctness and completeness of these documents.

2.4.2 Documentation generated by exida

[R1]	PRetop 5337 FMEDA v.4.xls of 03.02.12
[R2]	SV 5337 FMEDA reportmsg of 10.02.12
[R3]	SV Comments on last FMEDA.msg of 20.02.12
[R4]	Review.txt of 22.02.12
[R5]	SV 5337 FMEDA Report.msg of 02.07.14
[R6]	Total SFF calculations V2R0.xlsx

3 Description of the temperature transmitters PR5337 / PR6337 / PR7501

The temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output can be considered to be a Type B element with a hardware fault tolerance of 0. Figure 1 shows the three temperature transmitters PR5337 / PR6337 / PR7501.

Figure 1: Temperature transmitter PR5337 / PR6337 / PR7501

The temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output are isolated two-wire 4..20mA device used in many different industries for both control and safety applications. Combined with a temperature sensing device, the temperature transmitter PR5337 / PR7501 with 4..20 mA output becomes a temperature sensor assembly. PR7501 includes PR5337 as measuring part. It adds a display and an operating interface to the loop.

The temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output can be configured in the following 3 ways:

- With PR electronics A/S' communications interface Loop Link and PReset PC configuration software. (Except PR7501)
- With a HART® modem and PReset PC configuration software.
- With a HART® communicator with PR electronics A/S' DDL driver.
- PR7501: additionally with local operational interface

The transmitter operates with a 2-wire system. The same wires are used for the operating voltage (depending on the transmitter) and the output signal (4...20 mA) including HART® protocol. This is also indicated in the following figure.

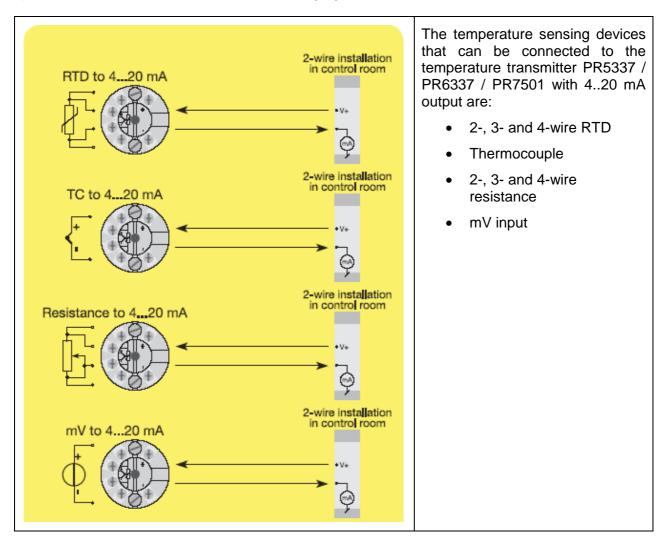


Figure 2: Input configurations with temperature transmitter PR5337 / PR6337 / PR7501

The FMEDAs have been performed considering the worst-case input sensor configuration.

4 Failure Modes, Effects, and Diagnostic Analysis

The Failure Modes, Effects, and Diagnostic Analysis, documented in [D14] and [D15], was prepared by PR electronics A/S and reviewed by *exida*. When the effect of a certain component failure mode could not be analyzed theoretically, the failure modes were introduced on component level and the effects of these failure modes were examined on system level (see fault insertion tests documented in [D14] and [D15].

In case of the PR7501 an analysis was made to investigate the impact of the added circuits (mainly display, operation interface and HART communication). The final result of this shows that the circuit does not add dangerous faults [D24], [D25], [D26]. The FMEDA results for the PR 5337 / PR 6337 were taken over for the PR 7501, as the additional circuits do not contribute to the dangerous failure rate.

4.1 Description of the failure categories

In order to judge the failure behavior of the temperature transmitter PR5337 / PR7501 with 4..20 mA output configurations, the following definitions for the failure of the configurations were considered.

Fail-Safe State

The fail-safe state is defined as the output reaching the user defined threshold value.

Fail Safe

A safe failure (S) is defined as a failure that plays a part in implementing the safety function that:

- a) results in the spurious operation of the safety function to put the EUC (or part thereof) into a safe state or maintain a safe state: or.
- b) increases the probability of the spurious operation of the safety function to put the EUC (or part thereof) into a safe state or maintain a safe state.

Fail Dangerous

A dangerous failure (D) is defined as a failure that plays a part in implementing the safety function that:

- a) prevents a safety function from operating when required (demand mode) or causes a safety function to fail (continuous mode) such that the EUC is put into a hazardous or potentially hazardous state; or,
- b) decreases the probability that the safety function operates correctly when required.

Fail Dangerous Undetected

Failure that is dangerous and that is not being diagnosed by internal diagnostics.

Fail Dangerous Detected

Failure that is dangerous but is detected by internal diagnostics.

Fail High

A fail high failure (H) is defined as a failure that causes the output signal to go to the maximum output current (> 21mA).

Fail Low

A fail low failure (L) is defined as a failure that causes the output signal to go to the minimum output current (< 3.6mA).

Annunciation

Failure that does not directly impact safety but does impact the ability to detect a future fault (such as a fault in a diagnostic circuit). Annunciation failures are divided into annunciation detected (AD) and annunciation undetected (AU) failures.

No effect Failure mode of a component that plays a part in implementing

the safety function but is neither a safe failure nor a dangerous

failure.

No part Component that plays no part in implementing the safety

function but is part of the circuit diagram and is listed for

completeness.

4.2 Methodology - FMEDA, Failure rates

4.2.1 FMEDA

A Failure Modes and Effects Analysis (FMEA) is a systematic way to identify and evaluate the effects of different component failure modes, to determine what could eliminate or reduce the chance of failure, and to document the system under consideration.

An FMEDA (Failure Mode Effect and Diagnostic Analysis) is an FMEA extension. It combines standard FMEA techniques with extensions to identify online diagnostics techniques and the failure modes relevant to safety instrumented system design. It is a technique recommended to generate failure rates for each important category (safe detected, safe undetected, dangerous detected, dangerous undetected, fail high, fail low) in the safety models. The format for the FMEDA is an extension of the standard FMEA format from MIL STD 1629A, Failure Modes and Effects Analysis.

4.2.2 Failure rates

The failure rates used in this analysis are the basic failure rates from the Siemens standard SN 29500. The rates were chosen in a way that is appropriate for safety integrity level verification calculations. The rates were chosen to match operating stress conditions typical of an industrial field environment. It is expected that the actual number of field failures due to random events will be less than the number predicted by these failure rates.

For hardware assessment according to IEC 61508 only random equipment failures are of interest. It is assumed that the equipment has been properly selected for the application and is adequately commissioned such that early life failures (infant mortality) may be excluded from the analysis.

Failures caused by external events however should be considered as random failures. Examples of such failures are loss of power or physical abuse.

The assumption is also made that the equipment is maintained per the requirements of IEC 61508 or IEC 61511 and therefore a preventative maintenance program is in place to replace equipment before the end of its "useful life".

The user of these numbers is responsible for determining their applicability to any particular environment. Accurate plant specific data may be used for this purpose. If a user has data collected from a good proof test reporting system that indicates higher failure rates, the higher numbers shall be used. Some industrial plant sites have high levels of stress. Under those conditions the failure rate data is adjusted to a higher value to account for the specific conditions of the plant.

4.2.3 Assumptions

The following assumptions have been made during the Failure Modes, Effects, and Diagnostic Analysis of the temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output converter configurations.

- Failure rates are constant, wear out mechanisms are not included.
- Propagation of failures is not relevant.
- Failures during parameterization are not considered.
- The HART protocol is only used for setup, calibration, and diagnostics purposes, not for safety critical operation.
- The device is installed per manufacturer's instructions.
- Sufficient tests are performed prior to shipment to verify the absence of vendor and/or manufacturing defects that prevent proper operation of specified functionality to product specifications or cause operation different from the design analyzed.
- The device is locked against unintended operation/modification.
- The worst-case internal fault detection time is 5 minutes.
- External power supply failure rates are not included.
- The Mean Time To Restoration (MTTR) after a safe failure is 24 hours.
- Only the described HW and SW versions are used for safety applications.
- The device is operated in the low demand mode of operation.
- The safety function is carried out via 1 input and 1 output channel.
- The listed SN29500 failure rates are valid for operating stress conditions typical of an industrial field environment with an average temperature over a long period of time of 40°C. For a higher average temperature of 60°C, the failure rates should be multiplied with an experience based factor of 2.5. A similar multiplier should be used if frequent temperature fluctuation (daily fluctuation of > 15°C) must be assumed. Other environmental characteristics are assumed to be within the manufacturer's ratings.
- Only the 4..20mA current output is used for safety applications.
- The 4..20 mA output signal is fed to a SIL 2 compliant analog input board of a safety PLC.
- The application program in the safety logic solver is configured according to NAMUR NE43
 to detect under-range and over-range failures of the 4..20 mA output signal, and does not
 automatically trip on these failures; therefore these failures have been classified as
 dangerous detected failures.

4.3 Results

$$\begin{split} DC &= \lambda_{DD} \, / \, (\lambda_{DD} + \lambda_{DU}) \\ \lambda_{total} &= \lambda_{SD} + \lambda_{SU} + \lambda_{DD} + \lambda_{DU} \\ MTBF &= MTTF + MTTR = (1 \, / \, (\lambda_{total} + \lambda_{no \, part} + \lambda_{AU})) + 24 \, h \end{split}$$

According to IEC 61508 the architectural constraints of an element must be determined. This can be done by following the $1_{\rm H}$ approach according to 7.4.4.2 of IEC 61508-2 or the $2_{\rm H}$ approach according to 7.4.4.3 of IEC 61508-2.

The 1_H approach involves calculating the Safe Failure Fraction for the entire element.

The 2_H approach involves assessment of the reliability data for the entire element according to 7.4.4.3.3 of IEC 61508-2.

This assessment supports the 1_H approach.

According to 3.6.15 of IEC 61508-4, the Safe Failure Fraction is the property of a safety related element that is defined by the ratio of the average failure rates of safe plus dangerous detected failures and safe plus dangerous failures. This ratio is represented by the following equation:

SFF =
$$(\Sigma \lambda_S \text{ avg} + \Sigma \lambda_{DD} \text{ avg}) / (\Sigma \lambda_S \text{ avg} + \Sigma \lambda_{DD} \text{ avg} + \Sigma \lambda_{DU} \text{ avg})$$

When the failure rates are based on constant failure rates, as in this analysis, the equation can be simplified to:

SFF =
$$(\Sigma \lambda_S + \Sigma \lambda_{DD}) / (\Sigma \lambda_S + \Sigma \lambda_{DD} + \Sigma \lambda_{DU})$$

Where:

λ_S = Fail Safe

λ_{DD} = Fail Dangerous Detected

λ_{DU=} Fail Dangerous Undetected

As the temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output is only one part of an element, the architectural constraints should be determined for the entire sensor element.

MTBF = MTTF + MTTR =
$$(1 / (\lambda_{total} + \lambda_{no part} + \lambda_{no effect} + \lambda_{AU})) + 24 h$$

4.3.1 Temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output

The FMEDA carried out on the temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output leads under the assumptions described in section 4.2.3 to the following failure rates:

Table 4: PR5337 / PR6337 / PR7501 for RTD sensor types – IEC 61508 failure rates

Failure category	Siemens SN 29500 [FIT]
Fail Safe Detected (λ _{SD})	0
Fail Safe Undetected (λ _{SU})	0
Fail Dangerous Detected (λ _{DD})	203
Fail Dangerous Detected (λ _{dd})	144
Fail Annunciation Detected (λ _{AD})	0
Fail High (λ _H)	17
Fail Low (λ _L)	42
Fail Dangerous Undetected (λ _{DU})	71
Fail Annunciation Undetected (λ _{AU})	1
No effect	122
No part	65
Total failure rate of the safety function (λ_{Total})	274
Safe failure fraction (SFF)	74%
DCD	74%
SIL AC ⁴	SIL 1

© exida.com GmbH Stephan Aschenbrenner

⁴ SIL AC (architectural constraints) means that the calculated values are within the range for hardware architectural constraints for the corresponding SIL but does not imply all related IEC 61508 requirements are fulfilled. In addition it must be shown that the device has a suitable systematic capability for the required SIL and that the entire safety function can fulfill the required PFD / PFH values.

Table 5: PR 5337 / PR 6337 / PR 7501 for TC sensor types - IEC 61508 failure rates

Failure category	Siemens SN 29500 [FIT]
Fail Safe Detected (λ _{SD})	0
Fail Safe Undetected (λ _{SU})	0
Fail Dangerous Detected (λ _{DD})	205
Fail Dangerous Detected (λ _{dd})	146
Fail Annunciation Detected (λ _{AD})	0
Fail High (λ _H)	17
Fail Low (λ _L)	42
Fail Dangerous Undetected (λ _{DU})	74
Fail Annunciation Undetected (λ _{AU})	1
No effect	117
No part	65
Total failure rate of the safety function (λ_{Total})	279
Safe failure fraction (SFF)	73%
DCD	73%
SIL AC ⁵	SIL 1

⁵ SIL AC (architectural constraints) means that the calculated values are within the range for hardware architectural constraints for the corresponding SIL but does not imply all related IEC 61508 requirements are fulfilled. In addition it must be shown that the device has a suitable systematic capability for the required SIL and that the entire safety function can fulfill the required PFD / PFH values.

5 Using the FMEDA results

The following section describes how to apply the results of the FMEDA.

5.1 Temperature sensing devices

A temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output together with a temperature sensing device becomes a temperature sensor assembly. When using the results of the FMEDA in a SIL verification assessment also the failure rates and failure modes of the temperature sensing device must be considered.

5.1.1 Thermocouple (TC) sensing devices

The failure mode distribution for thermocouples varies in published literature but there is strong agreement that open circuit or "burn-out" failure is the dominant failure mode. While some estimates put this failure mode at 99%+, a more conservative failure rate distribution suitable for SIS applications is shown in Table 6 and Table 7, when thermocouples are supplied from the temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output. The drift failure mode is primarily due to T/C aging. The temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output will detect a thermocouple burn-out failure and drive its output to the specified failure state.

Table 6 Typical failure rates for thermocouples (with extension wire)

Thermocouple Failure Mode Distribution	Low Stress	High Stress
Open Circuit (Burn-out)	900 FIT	18000 FIT
Short Circuit (Temperature measurement in error)	50 FIT	1000 FIT
Drift (Temperature measurement in error)	50 FIT	1000 FIT

Table 7 Typical failure rates for thermocouples (close coupled)

Thermocouple Failure Mode Distribution	Low Stress	High Stress
Open Circuit (Burn-out)	95 FIT	1900 FIT
Short Circuit (Temperature measurement in error)	4 FIT	80 FIT
Drift (Temperature measurement in error)	1 FIT	20 FIT

A complete temperature sensor assembly consisting of a temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output and a temperature sensing device can be modeled by considering a series subsystem where a failure occurs if there is a failure in either component. For such a system, failure rates are added.

Assuming that the temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output will go to the pre-defined alarm state on detected failures of the thermocouple, the failure rate contribution for the thermocouple is:

Low stress environment (close coupled)	High stress environment (close coupled)	
$\lambda_{dd} = 95 \text{ FIT}$	$\lambda_{dd} = 1900 \text{ FIT}$	
$\lambda_{du} = 4 \text{ FIT} + 1 \text{ FIT} = 5 \text{ FIT}$	$\lambda_{du} = 80 \text{ FIT} + 20 \text{ FIT} = 100 \text{ FIT}$	

Low stress environment (extension wire)	High stress environment (extension wire)
$\lambda_{dd} = 900 \text{ FIT}$	$\lambda_{dd} = 18000 \text{ FIT}$
$\lambda_{du} = 50 \text{ FIT} + 50 \text{ FIT} = 100 \text{ FIT}$	$\lambda_{du} = 1000 \text{ FIT} + 1000 \text{ FIT} = 2000 \text{ FIT}$

This results in a failure rate distribution and SFF of:

Table 8: PR5337 / PR6337 / PR7501 with TC

Environment	λ _{SD}	λsu	λ_{DD}	λου	SFF
Low stress, close coupled	0 FIT	0 FIT	300 FIT	79 FIT	79%
High stress, close coupled	0 FIT	0 FIT	2105 FIT	174 FIT	92%
Low stress, with ext. wire	0 FIT	0 FIT	1105 FIT	174 FIT	86%
High stress, with ext. wire	0 FIT	0 FIT	18205 FIT	2074 FIT	89%

5.1.2 RTD sensing devices

The failure mode distribution for an RTD also depends on the application with the key variables being stress level, RTD wire length and RTD type (4 wire). The key stress variables are high vibration and frequent temperature cycling as these are known to cause cracks in the substrate leading to broken lead connection welds. Failure rate distributions are shown in Table 9 and Table 10. The temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output will detect open circuit, short circuit and a certain percentage of drift RTD failures and drive its output to the specified alarm state.

Table 9 Typical failure rates for 4-Wire RTDs (with extension wire)

RTD Failure Mode Distribution	Low Stress	High Stress
Open Circuit (Burn-out)	410 FIT	8200 FIT
Short Circuit (Temperature measurement in error)	20 FIT	400 FIT
Drift (Temperature Measurement in error)	70 FIT ⁶	1400 FIT ⁷

Table 10 Typical failure rates for 4-Wire RTDs (close coupled)

RTD Failure Mode Distribution	Low Stress	High Stress
Open Circuit (Burn-out)	41,5 FIT	830 FIT
Short Circuit (Temperature measurement in error)	2,5 FIT	50 FIT
Drift (Temperature Measurement in error)	6 FIT ⁸	120 FIT ⁹

A complete temperature sensor assembly consisting of a temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output and a temperature sensing device can be modeled by considering a series subsystem where a failure occurs if there is a failure in either component. For such a system, failure rates are added.

⁶ It is assumed that 65 FIT are detectable if the 4-wire RTD is correctly used.

 $^{^{7}}$ It is assumed that 1300 FIT are detectable if the 4-wire RTD is correctly used.

⁸ It is assumed that 3.5 FIT are detectable if the 4-wire RTD is correctly used.

⁹ It is assumed that 70 FIT are detectable if the 4-wire RTD is correctly used.

Assuming that the temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output will go to the pre-defined alarm state on a detected failure of the RTD, the failure rate contribution for the RTD is:

4-Wire RTD close coupled:

Low stress environment	High stress environment
λ_{dd} = 41,5 FIT + 2,5 FIT + 3,5 FIT =47,5 FIT	λ_{dd} = 830 FIT + 50 FIT + 70 FIT = 950 FIT
λ _{du} = 2,5 FIT	λ_{du} = 50 FIT

4-Wire RTD with extension wire:

Low stress environment	High stress environment
λ_{dd} = 410 FIT + 20 FIT + 65 FIT = 495 FIT	λ_{dd} = 8200 FIT + 400 FIT + 1300 FIT = 9900 FIT
λ _{du} = 5 FIT	λ_{du} = 100 FIT

This results in a failure rate distribution and SFF of:

Table 11: PR5337 / PR6337 / PR7501 with 4-Wire RTD

Environment	λsd	λѕυ	λ_{DD}	λου	SFF
Low stress, close coupled	0 FIT	0 FIT	251 FIT	74 FIT	77%
High stress, close coupled	0 FIT	0 FIT	1153 FIT	121 FIT	90%
Low stress, with ext. wire	0 FIT	0 FIT	698 FIT	76 FIT	90%
High stress, with ext. wire	0 FIT	0 FIT	10103 FIT	171 FIT	98%

These numbers could be used in safety instrumented function SIL verification calculations for this set of assumptions.

6 Applying the FMEDA results

It is the responsibility of the Safety Instrumented Function designer to do calculations for the entire SIF. *exida* recommends the accurate Markov based exSILentia tool for this purpose. The following section describes how to apply the results of the FMEDA.

6.1 Example PFD_{AVG} calculation

The following results must be considered in combination with PFD_{AVG} values of other devices of a Safety Instrumented Function (SIF) in order to determine suitability for a specific Safety Integrity Level (SIL).

An average Probability of Failure on Demand (PFD_{AVG}) calculation is performed for a single (1001) temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output with *exida's* exSILentia tool. The failure rate data used in this calculation are displayed in section 4.3.1. A mission time of 10 years has been assumed, a Mean Time To Restoration of 24 hours and a maintenance capability of 100%. Table 12 lists the results for different proof test intervals considering an average proof test coverage of 95% (see Appendix 1).

Table 12: PFD_{AVG} values

	T[Proof] = 1 year	T[Proof] = 2 years	T[Proof] = 5 years
PR5337 / PR6337 / PR7501with RTD	PFD _{AVG} = 4.55E-04	PFD _{AVG} = 7.50E-04	PFD _{AVG} = 1.64E-03
PR5337 / PR6337 / PR7501with TC	PFD _{AVG} = 4.74E-04	PFD _{AVG} = 7.82E-04	PFD _{AVG} = 1.70E-03

For SIL2 the overall PFD_{AVG} shall be better than 1.00E-02. As temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 mA output is contributing to the entire safety function it should only consume a certain percentage of the allowed range. Assuming 25% of this range as a reasonable budget it should be better than or equal to 2.50E-03. The calculated PFD_{AVG} values are within the allowed range for SIL 2 according to table 2 of IEC 61508-1 and do fulfill the assumption to not claim more than 25% of the allowed range, i.e. to be better than or equal to 2.50E-03.

The resulting PFD_{AVG} graphs generated from the exSILentia tool for a proof test of 1 year are displayed in Figure 3.

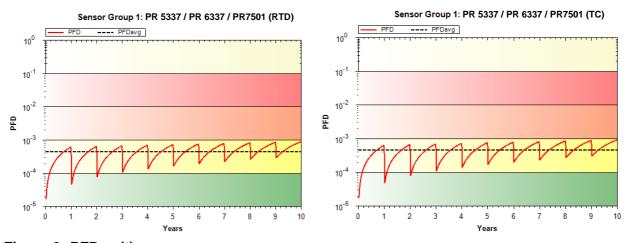


Figure 3: PFD_{AVG}(t)

7 Terms and Definitions

DC_D Diagnostic Coverage of dangerous failures (DC_D = λ_{dd} / (λ_{dd} + λ_{du}))

FIT Failure In Time (1x10⁻⁹ failures per hour)

FMEDA Failure Modes, Effects, and Diagnostic Analysis

HFT Hardware Fault Tolerance

Low demand mode Mode where the frequency of demands for operation made on a safety-

related system is no greater than one per year and no greater than twice

the proof test frequency.

MTBF Mean Time Between Failure

MTTF Mean Time To Failure

MTTR Mean Time To Restoration

PFD_{AVG} Average Probability of Failure on Demand

RTD Resistance temperature detector

SFF Safe Failure Fraction summarizes the fraction of failures, which lead to a

safe state and the fraction of failures which will be detected by

diagnostic measures and lead to a defined safety action.

SIF Safety Instrumented Function

SIL Safety Integrity Level

TC Thermocouple

Type B element "Complex" element (using micro controllers or programmable logic).

For details see 7.4.4.1.3 of IEC 61508-2, 2nd edition

T[Proof] Proof Test Interval

8 Status of the document

8.1 Liability

exida prepares FMEDA reports based on methods advocated in International standards. Failure rates are obtained from a collection of industrial databases. *exida* accepts no liability whatsoever for the use of these numbers or for the correctness of the standards on which the general calculation methods are based.

Due to future potential changes in the standards, best available information and best practices, the current FMEDA results presented in this report may not be fully consistent with results that would be presented for the identical product at some future time. As a leader in the functional safety market place, *exida* is actively involved in evolving best practices prior to official release of updated standards so that our reports effectively anticipate any known changes. In addition, most changes are anticipated to be incremental in nature and results reported within the previous three year period should be sufficient for current usage without significant question.

Most products also tend to undergo incremental changes over time. If an *exida* FMEDA has not been updated within the last three years and the exact results are critical to the SIL verification you may wish to contact the product vendor to verify the current validity of the results.

8.2 Releases

Version History: V3R2 PR5335 / PR6335 devices mentioned in addition; March 4, 2016

V3R1 Omitted MTBF values; August 11, 2015

V3R0 PR7501 field mounted device added; August 4, 2015

V2R0 Failure rates updated; July 11, 2014

V1R0 Review comments incorporated; February 27, 2012

V0R1 Initial version; February 22, 2012

Authors: Stephan Aschenbrenner

Review: V0R1 Rudolf P. Chalupa (exida); February 24, 2012

Dennis Gregersen (PR electronics A/S); February 23, 2012

Release status: Released to PR electronics A/S

8.3 Release Signatures

Dipl.-Ing. (Univ.) Stephan Aschenbrenner, Partner

Dipl.-Ing (FH)Jürgen Hochhaus, Senior safety engineer

Appendix 1: Possibilities to reveal dangerous undetected faults during the proof test

According to section 7.4.5.2 f) of IEC 61508-2 proof tests shall be undertaken to reveal dangerous faults which are undetected by diagnostic tests. This means that it is necessary to specify how dangerous undetected faults which have been noted during the FMEDA can be detected during proof testing.

A possible proof test consists of the following steps:

Step	Action
1	Bypass the safety PLC or take other appropriate actions to avoid a false trip
2	Perform a multi-point calibration of the temperature transmitter covering the applicable temperature range
3	Apply an adequate input signal to reach the pre-defined alarm level and verify that the safe state is reached (The analog current output corresponds to the provided input signal).
4	Restore the loop to full operation
5	Remove the bypass from the safety PLC or otherwise restore normal operation

It is assumed that this proof test will detect 95% of possible "du" failures in the device.

Appendix 2: Impact of lifetime of critical components on the failure rate

According to section 7.4.9.5 of IEC 61508-2, a useful lifetime, based on experience, should be assumed.

Although a constant failure rate is assumed by the probabilistic estimation method (see section 4.2.3) this only applies provided that the useful lifetime¹⁰ of components is not exceeded. Beyond their useful lifetime, the result of the probabilistic calculation method is meaningless, as the probability of failure significantly increases with time. The useful lifetime is highly dependent on the component itself and its operating conditions – temperature in particular (for example, electrolytic capacitors can be very sensitive).

This assumption of a constant failure rate is based on the bathtub curve, which shows the typical behavior for electronic components. Therefore it is obvious that the PFD_{AVG} calculation is only valid for components which have this constant domain and that the validity of the calculation is limited to the useful lifetime of each component.

It is assumed that early failures are detected to a huge percentage during the installation period and therefore the assumption of a constant failure rate during the useful lifetime is valid.

Table 13 shows which components with reduced useful lifetime are contributing to the dangerous undetected failure rate and therefore to the PFD_{AVG} calculation and what their estimated useful lifetime is.

Table 13: Useful lifetime of components with reduced useful lifetime contributing to λ_{du}

Туре	Useful lifetime
Tantalum electrolytic (C40)	Approximately 500000 hours
Temperature sensor	According to manufacturer specification

When plant experience indicates a shorter useful lifetime than indicated in this appendix, the number based on plant experience should be used.

_

¹⁰ Useful lifetime is a reliability engineering term that describes the operational time interval where the failure rate of a device is relatively constant. It is not a term which covers product obsolescence, warranty, or other commercial issues.

Appendix 3: Failure rates according to IEC 61508:2000 1st Edition

Table 14 PR5337 / PR6337 / PR7501 for RTD sensor types – IEC 61508 failure rates

Failure category	Siemens SN 29500 [FIT]
Fail Safe Detected (λ _{SD})	0
Fail Safe Undetected (λ _{SU})	123
Fail Safe Undetected (λ _{su})	0
No effect	122
Fail Annunciation Undetected (λ _{AU})	1
Fail Dangerous Detected (λ _{DD})	203
Fail Dangerous Detected (λ _{dd})	144
Fail Annunciation Detected (λ_{AD})	0
Fail High (λ _H)	17
Fail Low (λ _L)	42
Fail Dangerous Undetected (λ _{DU})	71
No part	65
Total failure rate of the safety function (λ_{Total})	397
Safe failure fraction (SFF)	82%
DC _D	74%
SIL AC ¹¹	SIL 1
MTBF	247 years

¹¹ SIL AC (architectural constraints) means that the calculated values are within the range for hardware architectural constraints for the corresponding SIL but does not imply all related IEC 61508 requirements are fulfilled. In addition it must be shown that the device has a suitable systematic capability for the required SIL and that the entire safety function can fulfill the required PFD / PFH values.

Table 15 PR5337 / PR6337 / PR7501 for TC sensor types – IEC 61508 failure rates

Failure category	Siemens SN 29500 [FIT]
Fail Safe Detected (λ _{SD})	0
Fail Safe Undetected (λ _{SU})	118
Fail Safe Undetected (λ _{su})	0
No effect	117
Fail Annunciation Undetected (λ _{AU})	1
Fail Dangerous Detected (λ _{DD})	205
Fail Dangerous Detected (λ _{dd})	146
Fail Annunciation Detected (λ _{AD})	0
Fail High (λ _H)	17
Fail Low (λ _L)	42
Fail Dangerous Undetected (λ _{DU})	74
No part	65
Total failure rate of the safety function (λ_{Total})	397
Safe failure fraction (SFF)	81%
DC _D	73%
SIL AC ¹²	SIL 1
MTBF	247 years

¹² SIL AC (architectural constraints) means that the calculated values are within the range for hardware architectural constraints for the corresponding SIL but does not imply all related IEC 61508 requirements are fulfilled. In addition it must be shown that the device has a suitable systematic capability for the required SIL and that the entire safety function can fulfill the required PFD / PFH values.